|
本帖最后由 伟大的墙 于 2010-9-3 04:07 编辑
回复 29# windstormm
What does poker have to do with mathematics? I hate mathematics anyway!”
Whether we like it or not, and whether we are aware of it or not, mathematics governs every decision we make while at the poker table. David Sklansky wrote:
“Every time you play a hand differently from the way you would have played it if you could see all your opponents' cards, they gain; and every time you play your hand the same way you would have played it if you could see all their cards, they lose. Conversely, every time opponents play their hands differently from the way they would have if they could see all your cards, you gain; and every time they play their hands the same way they would have played if they could see all your cards, you lose.”
This quotation may be written in plain English, but it is based on mathematical principles. The idea upon which it is based is that if we could see an opponent’s cards, we would be able to determine an action which maximizes our expected value (EV) i.e. make a decision which could be mathematically proven to be optimal. For those of you who don’t know what EV is, it is the amount of money we expect to make on average for a certain scenario e.g. if we flip a coin and every time it lands on heads you give me $3 and every time that it lands on tails, I give you $1, the EV for me of this proposition is=0.5x3-0.5x1=$1. Note that your EV is -$1 due to the fact that money is neither created nor destroyed in this example (this is not the case in poker though due to rake). What this means is that if one or more players have a +EV proposition, one or more players have a –EV proposition. This is important because every time your opponent makes a –EV decision, you make a +EV decision (assuming only two players).
It is impossible, of course, to know for sure what your opponents’ hole cards are (unless you play on Ultimate Bet ). For this reason, we need to adopt the concept of a range. Almost all of you should already know what a range is, but for those of you who don’t, a range is simply the possible holdings an opponent (or you yourself) could have. For example, if a regular with 14/12 stats raises from UTG, he might have AA, but that’s not all he could have, he more realistically will raise with the following hands AA-99, AK, AQ and occasionally suited connectors and smaller pocket pairs for deception and balance. This means that this player’s range for this hand in particular (ranges are not static) is AA-99, AK and AQ (plus the other hands they might use for balance). Now that we have an idea of what a range is, the fun can really begin.
The prerequisites for this Concept of the Week are as follows:
这个吗?没看出什么特别的啊?
我到建议你去看最新的 card ploayer上的一篇。
他说的也是关于数学的,但其实是一种具体战术。就说 Phil Helmuth已经10年没拿冠军了,因为现在出了群新秀,他们管新秀叫数学天才,其实他们自己也未必觉得自己用了很多数学。
现在的打法就是频繁用翻牌前的 semi-bluff,这个是死克兰斯基不懂的。这么新的战术,我想任何软件肯定也不会用。因为在做软件的人知道这战术之前,软件肯定也不会指导。
所以,重要的是有人想出一个打法,然后数学区帮助验证。其实,即使不验证,许多人用的挺好。
但你如果想用数学研究出一个战术来,那可能性就太小了。
法拉第发现了电磁感应现象后,麦克斯韦想出方程。
但我绝对不相信相反的路。有人不做实验观察,只靠数学就想出电磁感应现象。
总的来说,我觉得麦克斯韦比法拉第牛逼。但没有法拉第,麦克斯韦肯定想不出电磁方程。
我们来看这几句
奥斯特发现了电流的磁效应,再加上伟大的安培的开创工作,两位先贤描绘了电磁大厦的草图。
伟大的法拉第用电磁感应定律为大厦奠定了坚实的基础。
而伟大的麦克斯韦在竣工那天,以电磁学方程组为它剪彩,标志大厦的最终落成。
任凭麦克斯韦数学再好,再有天分。如果别人不告诉他电磁可以相互转换,他都不知道自己的数学干吗用。
我相信,从智力上,麦克斯韦比法拉第牛逼。法拉第是通过不懈的实验观察出来的。
但可以说,没有法拉第和奥斯特两位实验的,动脑子观察的,肯定没有麦克斯韦方程。
但没有麦克斯韦,他们两个照样发下了电磁现象。
现在扑克理论很不成熟。就相当于有许多爱观察的奥斯特和法拉第,但还没有麦克斯韦。
你们那些理论,比如关于Q9翻牌前 all in的EV ,连你们自己都有那么多争议,别人怎么敢用呢。
但我用一种脱离数学(我的数学仅仅限于加减乘除,加减乘除不算数学)和软件的方法来决定翻牌前是否推Q9.
1,看看死钱多不,死钱多的话,吃亏我也推。至于Q9对平均是40%,50%,60%,关系不大。死钱在那里补充着呢。如果有权威的数字告诉我是什么,我也许信。但现在的数据,不准。
2,看看有没有 fold eq。如果有丹牛那样打死不扔的,我少翻牌前推。如果对手都喜欢扔。我就多推。
我这不是用很简单的办法解决了有争议的高难数学吗?
当然,如果让我不花很多时间去接受一个结果,我会接受的。我喜欢钱,不喜欢较劲。但如果像你们计算Q9那样,什么这样模拟,那样模拟,模拟来模拟去自己都糊涂了。我肯定不会参与进去。
再比如,我知道软件肯定有帮助,但我要花好多时间学,我又很少在网上打,所以,就算了。也不学了。
但 card player上,像 Ed miller他们写的那些简便易行的战术,我还是很喜欢学习的。他们也许有复杂的计算,但全放在了幕后。
就向我当年学21点算牌,计算过程非常复杂,但最后总结出来时一张表。我的任务就是记住那一张表。复杂的计算我挑战不来。
我这样翻牌前的战术玩了至少1年了,前几天才看到杂志上总结出来。也许他不是第一次总结,但不重要,总之,我用这打法赢不少钱了。
所以,我一看到 card player上这文章,更坚定了我翻牌前打法的正确。也坚信了,许多时候我们不需要知道那么多准确的数据。 |
|