智游城

 找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 5978|回复: 11
打印 上一主题 下一主题

这篇文章贴好多天,竟然集体沉默

[复制链接]
跳转到指定楼层
1#
伟大的墙 发表于 2010-9-11 01:54:23 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
Math Brats’ PsychologyFearless and hyperaggressive
by Alan Schoonmaker |  Published: Sep 03, 2010

   

TIME magazine rarely discusses poker, but the June 28, 2010, issue contained “Attack of the Math Brats.” It praised Phil Hellmuth’s past accomplishments, but said, “Last year it all began to fall apart. Hellmuth, 45, lost money and failed to make the final table of even one tournament for the first time in more than a decade …

“He blames the new breed of math nerd. … ‘The reason I won 11 bracelets is my ability to read opponents. … These new guys are focused on the math. And they are changing everything.’”

The article continued: “In the past few years, hold’em has evolved … into a hyperaggressive contest for betting bullies who risk all their chips at bizarre moments.”

When David Sklansky and I discussed this article, he said that it missed an important psychological point. Mathematical players tend to be nerds, but the math brats don’t play that way. Most nerds are conservative. They wait for good cards before putting in their money.

Aggressive players are usually different kinds of people. They love action or rely on great people-reading skills. The toughest aggressive players have both qualities. They can sense weakness, have confidence in their reads, and get a kick out of bluffing. Stu Ungar, three-time winner of the World Series of Poker main event, was the best example.

Math still attracts the same kinds of nerds. You remember the high-school kids who loved math. They were usually studious, introverted, insecure, and socially inept. Most were boys, but a few were girls.

Today’s math brats are more aggressive than Stu Ungar! They drive tournament players nuts by raising, three-betting, and shoving in their stacks with hands that most people never used to consider playing. Some of them do it not because they love to gamble, not because they have great people-reading skills, but because the math proves that a hyperaggressive style pays off in tournaments, especially no-limit hold’em tournaments.

Of course, if they didn’t have some gamble in them, they wouldn’t play poker, but their mastery of the math has made them choose a hyperaggressive style. If you play 50 tournaments a year, you’ll win more money with one first-place finish than with 15 or 20 small cashes.

The math brats’ style creates an illusion about their personality. Most opponents don’t see them as nerds. Because their aggressive style doesn’t fit the stereotype, many opponents see them as crazy risk-takers. And because they don’t understand how the brats think, they don’t adjust well.

This hyperaggressive style was never popular before, but its foundations were laid many years ago in David Sklansky’s The Theory of Poker. Although he didn’t invent the tactic, he coined the term “semi-bluff,” and he analyzed it mathematically. “A semi-bluff is a bet [or raise or check-raise] with a hand which, if called, does not figure to be the best hand at the moment, but has a reasonable chance of outdrawing those hands that initially called it.” (Page 91)

When he wrote that book, hardly anyone played no-limit hold’em. In limit games, bets are called much more often than they are in no-limit games. In no-limit hold’em tournaments, even fewer bets are called, and not many hands go to showdown. As the probability that everyone will fold goes up, the fold equity of raising increases.

In addition, even when you are called, you will win more often than most people believe. Unless you’re facing an overpair, your opponent is not that big a favorite. For example, A-K suited is the best no-pair hand, while 7-2 offsuit is the worst, but A-K suited is only a 69-31 favorite.

Most people would regard shoving all in with 7-2 offsuit a pure bluff, because you don’t seem to have a reasonable chance of drawing out. But if you get called by A-K suited, you have about the same odds of winning as if you semibluffed on the flop with an open-end straight draw against a big pocket pair.

And your chances of being called by some overpairs are small. David Sklansky called it “The Gap Concept” in Tournament Poker for Advanced Players: “In a tournament, it is often right to open-raise with hands which are far inferior to those with which you would need to call someone else who has open-raised.” (Page 28)

For example, many people would not risk their tournament lives with a pair of eights. They would be a large favorite only if the raiser had two smaller cards, which rarely happens. If the opponent has two overcards, it’s a coin flip. If the opponent has an overpair, they’re a huge dog. So, they fold.

If you add the fold equity and your equity when called, shoving all in is often the mathematically correct play. In fact, if your opponents will fold often enough, you should shove with any two cards. Of course, the exact definition of “often enough” depends on your opponents, the blinds, the size of the pot, and your stack size.

Because better qualified people have analyzed the mathematics of making and calling all-in bets, I won’t discuss that subject. I’ll just say that the math clearly favors a hyperaggressive strategy, and some of the math brats who play that way are not doing it because they have Stu Ungar’s love for action or his gifts of spotting and exploiting weakness.

They don’t need to be able to read tells, and so on (although some have those skills). All they need is mastery of tournament math, which gives them an immense edge over opponents who either can’t do the math or are afraid to risk their stack. So, we have some nerds playing like confident, wild gamblers, winning big, and driving opponents crazy.

What are the implications for you? In Your Worst Poker Enemy, I wrote that poker has a Darwinian evolution. Because our game changes, “If you play the same way tomorrow that you do today, your results will slowly deteriorate.” (Page 216) You may resent the math brats’ youth, success, and hyperaggression, but they are facts, and you had better accept that reality.

One option is to try to adjust to them. It won’t be easy, and it may be impossible. Adjusting may take you so far out of your comfort zone that you become ineffective.

Another option is to avoid them. For example, some of my friends used to play several WSOP events, but now play only the seniors tournament. Some people have completely stopped playing tournaments. They stick to cash games, preferably limit games.

You may hate admitting that you can’t cope with those fearless, hyperaggressive kids, but it’s better to face the truth. If you don’t, you can become severely frustrated, and lose heavily.

Dr. Schoonmaker (alan_schoonmaker@yahoo.com) is David Sklansky’s co-author of DUCY? He is the sole author of The Psychology of Poker, Your Worst Poker Enemy, Your Best Poker Friend, and Poker Winners Are Different.

收藏 分享
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏
2#
hahuhu 发表于 2010-9-11 02:25:39 | 只看该作者
确实看了个囫囵吞枣。英文不过关啊。
3#
leisong 发表于 2010-9-11 05:57:51 | 只看该作者
本帖最后由 leisong 于 2010-9-11 06:01 编辑

我感觉,hyperaggressive,在比赛中是至尊无上境界,其表看似暴力,然其内涵却是兵法的最高境界---不战而屈人之兵。
4#
SUIM 发表于 2010-9-11 08:46:13 | 只看该作者
我感觉,hyperaggressive,在比赛中是至尊无上境界,其表看似暴力,然其内涵却是兵法的最高境界---不战而屈 ...
leisong 发表于 2010-9-11 05:57



谢谢LZ的帖子。这几天忙着赶活。
楼上的溢美不知有没有根据。原文讲的是很浅显的道理,至少我没看出最高境界一条。对我来说,从数学角度去赌,谈不上最高。
打个比方,你和一个人对赌,锅里100,他拿AK 推,你拿72,你手里剩80,从数学NERD的角度你就该靠。这是最高境界?

可能我理解错了,请指正。
5#
leisong 发表于 2010-9-11 09:34:00 | 只看该作者
谢谢LZ的帖子。这几天忙着赶活。
楼上的溢美不知有没有根据。原文讲的是很浅显的道理,至少我没看出最高 ...
SUIM 发表于 2010-9-11 08:46



    如果是现金游戏,我对这种打法并没有李理论认识上的把握,但比赛与现金游戏却不尽相同。记得《走向共和》里边有一段戏,是李鸿章和翁同和两个人的戏,李向翁要军饷,翁说没有,即使有也不给,因为国家天天养着北洋水师,徒耗银子,却从来没用过,李说,虽然不用,但也要养着,北洋水师的最终目的不是真的要打仗,而是要对外形成猛虎在山之势,这样可以不战而屈人之兵。
hyperaggressive,如果真的刺刀见红,其实是完全处于劣势,但他的目的不是拔刀相向,而是威慑,就如核弹的功能,简单地说,他的语言就是:我不要命了,你看着办,只要是穿着鞋的人,谁都怕。

以上是我的理解,请指正。
6#
leisong 发表于 2010-9-11 09:37:53 | 只看该作者
大家都知道,比赛的目的是看谁能活到最后,而hyperaggressive却是说,各位,我先死给你们看。都说打牌的最佳策略是与所有人的策略背道而驰,hyperaggressive显然走到了极点。
7#
 楼主| 伟大的墙 发表于 2010-9-11 10:03:18 | 只看该作者
回复 5# leisong


    高
你要真拼命敌人就怕了
越怕你长的越快
8#
SUIM 发表于 2010-9-11 11:47:10 | 只看该作者
LS分析的有道理。俺是只见树木不见森林的井蛙之见。见了眼前不知身后。谢了!

疯子疯不疯,无关紧要。要紧的是别人躲着你走。原文没这层意思。LS高!

不过有一点不是很同意“hyperaggressive,如果真的刺刀见红,其实是完全处于劣势。。。”。原文的意思就是试图解释这一点,讲HYPERAGGRESSIVE的其实并不疯,是躺在马路中间的醉鬼。他心里明白(数学计算)。
9#
 楼主| 伟大的墙 发表于 2010-9-12 01:21:54 | 只看该作者
回复 4# SUIM


    基本上错了
我没仔细算,这个guoli100,你余下80靠,对付ak也许不吃亏但意义不大
真正的动力来自你80先推,让敌人没有ak更好的牌扔
10#
 楼主| 伟大的墙 发表于 2010-9-12 02:14:02 | 只看该作者
本帖最后由 伟大的墙 于 2010-9-12 03:09 编辑

我读出的中心思想就是这句话

Most people would regard shoving all in with 7-2 offsuit a pure bluff, because you don’t seem to have a reasonable chance of drawing out. But if you get called by A-K suited, you have about the same odds of winning as if you semibluffed on the flop with an open-end straight draw against a big pocket pair.

首先,我评论一下这文章。
他强调了很多数学的事,有点喧宾夺主。这种新打法里面没有任何更高难的数学,不过是建立在简单数学基础上的一种更激进的打法而已。我想这种打法的产生,多半不是来自数学,而是来自这些年轻人的实践。
好多好多别的打法,都比这种打法用的数学多。不说这个了。

中心思想是,如果敌人没有大对,任何两张牌,对任何两张牌都不太落后,翻牌前all in了,打到 river,即使是72遭遇AK,你的盈率也大概相当于你在flop上的 open ended遭遇了对手一副对的盈率。
看一个翻牌后的例子:
如果锅里100,你余下100,你手里910,翻牌Q78,对手Q2,你们单挑。假如说,这时候,你先 all in100,这个打法很奇怪吗?非常非常正常。这种打法真正好于不好的地方,不太取决于你的盈率是不是大约1/3左右,而是你有多大的信心把对手打走,这是你这个 semi-bluff的核心。如果你知道对手是个中了顶对打死都不走的人,这样打虽然也不错,但基本没啥优势了。所以,关键是你读对手,扔掉顶对烂踢脚的可能有多大。也就是这打法的关键是fold eq,不是odds.

我们假设玩1-2,你手里有100.假如翻牌前有人搞到20,4个靠,你100 all in,你也不一定是72那么差,但不太好,类似J9之类。
这时候最重要的是,你心里要有谱,对手扔的可能有多大。最主要的,是第一个raise到20的人是什么样的人。这才是所有技术的核心。一般说来,如果第一个靠了,后面就会纷纷靠,第一个扔了,后面纷纷扔。我感觉,只要你对这个对手有足够了解,至少有一半的时候大家全扔了,你直接赢100,你的100变200。
还有一半的时候有人靠。如果只有一个人靠,你至少有1/3的机会赢。如果有很多人靠,凶多吉少。但玩10手,有5手你已经赢500了,持平。其他那5把,就算全输了,不过是本钱。所以,这是一种非常赚钱的打法。

回到比赛,由于比赛不停的涨,你经常会遇到这局面。当盲注是500-1000的时候,你还有5000,4个人limp ,你拿XY all in多数时候别人全扔了,你直接把5000变10000。

在 odds上,这种打法被人靠了,只要不是大对,你还相当于一个 open-end。
但翻牌前的 fold eq,要比翻牌后大得多。翻牌前 all in,在99%的选手心目中,意味着你是AA,所以,大家都扔。你就是利用大家以为你有AA的心理,让他们去扔。
也就是说,翻牌前的 semi-bluff,fd eq要比翻牌后拿 open-end大得多,所以是一种更加赚钱的打法。

但这么好的打法,按本文章的意思,phil hellmuth似乎不会。
你看这么简单的道理,为什么他会不懂呢。难道他不会这简单的数学吗,他肯定会。
但扑克历史太短,教材才考资料等太不完善。没有人提醒他去做这道数学题,所以,他再好的数学,也产生不了这个新打法。
所以,扑克的提升潜力,主要在于你给自己找哪些数学题去做。这个题一般都灰常简单,一般智力的人,包括我,都会做。
而你收获的大小,不取决于你这个题做得有多好,而是你自己找到了多少个问题。

说道这我想屁话几句数学教育问题。你看,我们学校里靠数学都是老师出好题学生做。谁做得对又好,他的分就高。
而真正的活生生的世界,是要你解决问题。没有人给你出题让你计算。而是要你自己寻找问题。找不到问题,计算就没有任何意义了。所以,我们培养了许多会做题的大学生,缺没有培养学生自己找问题的能力。

这就是为什么我们打扑克还有更多提升空间的原因。
扑克里面的技术,都不涉及高难的数学。关键是你要不怕辛苦,多去算。许多地方只要你重新算,都会觉得过去教材上说的不对。
所以我说,我们要感谢教材的不完善,才给了我们这么大的提高空间。

翻牌前 semi-bluff,不过是扑克中一个很简单的技术,扑克历史这么多年,才有人把他总结出来。当然,如果有人比这篇文章早总结出来,算我孤陋寡闻。至少可以肯定,扑克最好的好手们,包括 hellmuth,在读这篇文章之前没有用过。

说到这里,我再问一个更简单的计算,看看我们有多少人犯过类似错误。

还是1-2,你拿了KK,翻牌前你搞到15,J9靠,你手里筹码100,还余下85,锅里30
翻牌J24,你上25,敌人靠,锅里80
转一个3,你余下60 all in敌人靠,和来了9,你输了。

许多人会总结这种打法错在哪里?
1,你翻牌前干到30他就扔了,你就不会输
2,翻牌后你如果不干25,直接all in他就扔了。

我想多数人都会这样建议你,让你下一次把这首牌打得更好。这里的数学道理非常简单。最佳打法就是你打输了那种打法,可为什么我们会产生这两种其他不太好的打法呢,就是因为大家都没仔细计算过。太想赢下这一次,而没有最大化期望值。

翻牌前,直接打走,你直接赢3元,期望值是3
翻牌后直接打走,你期望值是30
而你这样慢慢的揉他,期望值是,他5个活路20%的机会赢,你的机会是0.8*130-0.2*130=78,比那两个方案好得多。

这里的数学非常简单,关键是你要不辞辛劳去算一算。
为什么我们会产生1和2这样的念头。就是其实我们并不了解什么是期望值本质。只计算,不掌握本质,是中国,也许是全世界数学教育的悲哀。记得我刚上高中学物理,学牛顿第一第二定律。当时我反复琢磨,为什么牛顿就能想出惯性定律,为什么伽利略差一点就没想到呢,等等。都是高考不考的。我告诉你现在也有许多孩子学物理也很感兴趣者方面的问题。但物理老师告诉他,别想那没用的,这里关键就这么两个公式,记住这公式,考试就能考100分。于是,所有孩子的创造性,就被这个公式,公式,是最容易出成高考题的东西,给扼杀掉了。孩子们不用努力去思考牛顿为什么能想出这两个定律来,你去想这个问题,只能让你高考丢分。于是,所有的学生,3年高中下来,变成只会把题做对,不需要考虑物理本质的孩子了。到了高三,还在想牛顿为什么能想出来这两个定律的孩子,被物理老师看做弱智,神经病。是啊,高考不考这个,你想他干嘛,不神经是什么?


我们太在乎赢不赢这一手了,而不太在乎是不是赢更多的钱。翻牌打走他,我们把这一次100%赢下了,你却在浪费赢更多钱(输更多次数的机会)。
所以,rich老说,打牌主要就是产生思路。思路比什么都重要。

我想我想出的这个小地方不过是扑克里的冰山一角,只要你勇于懂脑子,有太多的地方都可以算出新打法了。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|Archiver|智游城论坛

GMT+8, 2024-11-24 04:56 , Processed in 0.085241 second(s), 8 queries , Redis On.

Powered by Discuz! X3.2

© 2001-2012 Comsenz Inc.

返回顶部